Featured Posts
Algebraic Identities Of Polynomials
- Get link
- X
- Other Apps
INDEX |
|
1 |
Square Table |
2 |
Cubic Table |
3 |
Algebraic Identities |
SQUARE TABLE
SQUARE TABLE |
||||
NUMBER |
SQUARE |
NUMBER |
SQUARE |
|
12 |
1 |
212 |
441 |
|
22 |
4 |
222 |
484 |
|
32 |
9 |
232 |
529 |
|
42 |
16 |
242 |
576 |
|
52 |
25 |
252 |
625 |
|
62 |
36 |
262 |
676 |
|
72 |
49 |
272 |
729 |
|
82 |
64 |
282 |
784 |
|
92 |
81 |
292 |
841 |
|
102 |
100 |
302 |
900 |
|
112 |
121 |
312 |
961 |
|
122 |
144 |
352 |
1225 |
|
132 |
169 |
402 |
1600 |
|
142 |
196 |
452 |
2025 |
|
152 |
225 |
502 |
2500 |
|
162 |
256 |
552 |
3025 |
|
172 |
289 |
602 |
3600 |
|
182 |
324 |
652 |
4225 |
|
192 |
361 |
702 |
4900 |
|
202 |
400 |
752 |
5625 |
CUBIC TABLE
CUBIC
TABLE |
||||
NUMBER |
CUBE |
NUMBER |
CUBE |
|
13 |
1 |
113 |
1331 |
|
23 |
8 |
123 |
1728 |
|
33 |
27 |
133 |
2197 |
|
43 |
64 |
143 |
2744 |
|
53 |
125 |
153 |
3375 |
|
63 |
216 |
163 |
4096 |
|
73 |
343 |
173 |
4913 |
|
83 |
512 |
183 |
5832 |
|
93 |
729 |
193 |
6859 |
|
103 |
1000 |
203 |
8000 |
Algebraic Identities
1 |
(a + b)2
= a2 + b2 + 2ab |
2 |
(a - b)2
= a2 + b2 –
2ab |
3 |
(a + b)(a - b) = a2 –
b2 |
4 |
(x + a)(x + b) = x2 +
(a + b)x + ab |
5 |
(a + b + c)2 =
a2 + b2 + c2 + 2ab + 2bc +
2ca |
6 |
(a + b)3 = a3 +
b3 + 3ab(a + b) or a3 +
b3 + 3a2b + 3ab2 |
7 |
(a - b)3 =
a3 - b3 - 3ab(a - b) or a3 -
b3 - 3a2b + 3ab2 |
8 |
a3 + b3 = (a + b)(a2 + b2 -
ab) |
9 |
a3 - b3
= (a - b)(a2 + b2 +
ab) |
10 |
a3 + b3 + c3 -
3abc = (a + b + c)(a2+ b2 + c2 – ab – bc -
ca) If a + b +
c = 0 then a3+b3+c3 = 3abc |
Some Special
Identities |
|
11 |
a2 +
b2 = (a + b)2 - 2ab |
12 |
a2 +
b2 = (a - b)2 + 2ab |
13 |
a3 + b3 =
(a + b)3- 3ab(a + b) |
14 |
a3 - b3 =
(a - b)3 + 3ab(a - b) |
1 |
This Algebraic Identity can be used while finding the square root of a complex number in chapter 5 class 11 (a2 + b2)2
= (a2 - b2)2 +
4a2b2 |
2 |
These Algebraic Identities(2 to 5) can be derived with the help of Binomial Expansion Chapter 8 class 11 (a + b)4 =
a4 + 4a3b + 6a2b2 + 4ab3 + b4 |
3 |
(a - b)4 =
a4 - 4a3b + 6a2b2 - 4ab3 + b4 |
4 |
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 |
5 |
(a - b)5 = a5 - 5a4b + 10a3b2 - 10a2b3 + 5ab4 - b5 |
- Get link
- X
- Other Apps
Comments
Very useful for me
ReplyDeleteThanks for this
ReplyDeleteGood
ReplyDelete