Mathematics Lab Manual Class IX lab activities for class 09 with complete observation Tables strictly according to the CBSE syllabus also very useful & helpful for the students and teachers.
Get link
Facebook
X
Pinterest
Email
Other Apps
Differentiation Ch-5 Class 12 | Continuity @ Differentiability
Differentiation Chapter - 5, Class 12 Continuity @ Differentiability
Method of explaining continuity and differentiable, method of finding the derivative by First Principal. Differentiation of polynomial functions, logarithmic functions , exponential functions and trigonometric functions, product rule, quotient rule in differentiation
DIFFERENTIABILITY
f(x) is said to be differentiable if left hand differentiation is equal to the right hand differentiation.
First order derivatives can be written as \[\frac{dy}{dx}=y'=y_{1}\]Second order derivatives can be written as \[\frac{d^{2}y}{dx^{2}}=y''=y_{2}\]Third order derivatives can be written as\[\frac{d^{3}y}{dx^{3}}=y'''=y_{3}\]
LOGARITHMIC FUNCTIONS
Any function of type y = is called logarithmic function
If base b is replaced by 10 then it is called common logarithm.
If base b is replaced by 'e' then it is called natural logarithm .
Natural logarithm is denoted by lnx.
In place of lnx we simple write logx \[log\: mn=log\;m+log\;n\]\[log\frac{m}{n}=logm-logn\]\[log\: m^{n}=n\: log\: m\]
DELETER FROM CBSE SYLLABUS
ROLL'S THEOREM
If f(x) is a continuous function in [a, b] and is differentiable in (a, b) and f(a) = f(b) then there exist some c ∊ (a, b) such that f ' (c) = 0
Algorithm for proving Roll's Theorem
a) Explain the continuity of the function f(x) in close interval [a, b]
b) Explain the differentiable of the function f(x) in open interval (a, b). If function is differentiable then find f '(x).
c) Check whether f(a) = f(b)
d) If all the above three conditions are satisfied then there exist some c ∊ (a, b) such that f ' (c) = 0.
Use this equation to find the value of c.
If c ∊ (a, b) then Roll's Theorem verified.
NOTE: f '(x) is called the slope of tangent and when f '(x) = 0 then slope is become parallel to the x-axis.
In the figure below red lines shows the tangents are parallel to the x-axis at all the points where f '(x) = 0
MEAN VALUE THEOREM
If f(x) is a continuous function in [a,b] and is differentiable in (a,b) then there exist some c ∊ (a, b) such that \[f'(c)=\frac{f(b)-f(a)}{b-a}\]
Algorithm for proving Mean Value Theorem
a) Explain the continuity of the function f(x) in close interval [a, b]
b) Explain the differentiable of the function f(x) in open interval (a, b). If function is differentiable then find f '(x).
c) When both the above conditions are satisfied the use formula given below to find the value of c. \[f'(c)=\frac{f(b)-f(a)}{b-a}\]
If c ∊ (a, b) then Mean Value Theorem is verified.
Theorems on Parallelograms Ch-8 Class-IX Explanation of all theorems on Parallelograms chapter 8 class IX, Theorem 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, Mid point theorem and its converse. All theorems of chapter 8 class IX.
Mathematics Lab Manual Class XII 14 lab activities for class 12 with complete observation Tables strictly according to the CBSE syllabus also very useful & helpful for the students and teachers. General instructions All these activities are strictly according to the CBSE syllabus. Students need to complete atleast 12 activity from the list of 14 activities. Students can make their own selection.
Mathematics Lab Manual Class X lab activities for class 10 with complete observation Tables strictly according to the CBSE syllabus also very useful & helpful for the students and teachers.
Thank google account
ReplyDelete