Featured Posts
Trigonometric, Identities & Formulas
- Get link
- X
- Other Apps
Relation between angle and sides of the triangle, values of trigonometric functions at standard angles, transformation and trigonometric identities
Sona |
Chandi |
Tole |
Pandit |
Badri |
Parsad |
Har |
Har |
Bole |
sin θ |
cos θ |
tan θ |
P |
B |
P |
H |
H |
B |
cosec θ |
sec θ |
cot θ |
0o |
30o |
45o |
60o |
90o |
|
Sin |
0 |
1/2 |
\[\frac{1}{\sqrt{2}}\] |
\[\frac{\sqrt{3}}{2}\] |
1 |
Cos |
1 |
\[\frac{\sqrt{3}}{2}\] |
\[\frac{1}{\sqrt{2}}\] |
1/2 |
0 |
Tan |
0 |
\[\frac{1}{\sqrt{3}}\] |
1 |
\[\sqrt{3}\] |
\[\infty\] |
Cot |
\[\infty\] |
\[\sqrt{3}\] |
1 |
\[\frac{1}{\sqrt{3}}\] |
0 |
sec |
1 |
\[\frac{2}{\sqrt{3}}\] |
\[\sqrt{2}\] |
2 |
\[\infty\] |
cosec |
\[\infty\] |
2 |
\[\sqrt{2}\] |
\[\frac{2}{\sqrt{3}}\] |
1 |
Sin0o |
Sin30o |
Sin45o |
Sin60o |
Sin90o |
0 |
1 |
2 |
3 |
4 |
\[\frac{0}{4}\] |
\[\frac{1}{4}\] |
\[\frac{2}{4}\] |
\[\frac{3}{4}\] |
\[\frac{4}{4}\] |
0 |
\[\frac{1}{4}\] |
\[\frac{1}{2}\] |
\[\frac{3}{4}\] |
1 |
\[\sqrt{0}\] |
\[\sqrt{\frac{1}{4}}\] |
\[\sqrt{\frac{1}{2}}\] |
\[\sqrt{\frac{3}{4}}\] |
\[\sqrt{1}\] |
0 |
\[\frac{1}{2}\] |
\[\frac{1}{\sqrt{2}}\] |
\[\frac{\sqrt{3}}{2}\] |
1 |
For values of other trigonometric ratios
write all these values for sinθ in the reverse order(from right to left)
Derivation of Sin2θ + cos2θ = 1
Let us take an right angled triangle ABC as shown belowIn triangle
ABC, by Pythagoras theorem
AB2 = AC2 + BC2 ................ (1)
Dividing on both side by AB2
Derivation of cosec2θ - cot2θ = 1
Derivation of Sec2θ - tan2θ = 1
Geometrical Representation of Trigonometric Ratios with the 60o .
Geometrical Representation of Trigonometric Ratios with the 45o.
- Get link
- X
- Other Apps
Comments
Good and very useful.
ReplyDelete